Invited Review Article

Radiological approach to benign biliary strictures

Dong Il Gwon,1 Hans-Ulrich Laasch2,*

A B S T R A C T

Benign biliary strictures can be attributable to a large variety of causes, but are commonly iatrogenic after direct or vascular injury during laparoscopic cholecystectomy and other biliary procedures. An increasing number of patients present with strictures of biliary-enteric anastomoses after liver transplantation and radical surgery for hepatopancreaticobiliary cancer. Endoscopic access to the biliary tree may be difficult or impossible following pancreatoduodenectomy, and in this context strictures are best approached percutaneously. In the past, strictures could only be managed with repeated balloon dilatations and/or long-term transhepatic catheter placement. This is not very satisfactory from a patient point of view. A long-term external drain is disfiguring and challenging to manage, and the patient has to undergo repeated, potentially very painful procedures. Newer developments attempting to achieve long-term resolution of benign strictures include fully covered, removable metal stents and the emerging option of biodegradable stents. Early outcomes of these new technologies are promising, but require a careful and considered multidisciplinary approach and heavy clinical involvement of the interventional radiologist.

Introduction

There are many causes of benign strictures of the biliary tree, which include inflammation, gall stone disease, infection including parasites, and congenital abnormalities,1 with iatrogenic strictures becoming more prevalent.

During cholecystectomy, strictures may be caused by direct trauma to the bile duct, thermal injury from cauterization, ischemia due to vascular injury, or occlusion by erroneous application of vascular clips. An increasingly important context is the radical treatment of cancers of the bile duct, pancreas, or duodenum. Although surgical revision is still regarded as a gold standard of treatment, this may be undesirable after radical cancer surgery, and patients increasingly expect to be treated with a minimally invasive approach.

Strictures of the anastomosis following pancreatoduodenectomy are particularly difficult to manage because endoscopic access may not be possible even with balloon enteroscopy or endoscopic ultrasound. The same applies to liver transplantation, where there is an additional risk of developing ischemic biliary strictures owing to the devascularization.

Benign bile duct strictures carry the risk of stone formation and ascending cholangitis, which in itself may be life-threatening but can also lead to subsequent biliary cirrhosis.2 Dealing with benign bile duct strictures can be extremely challenging and requires good collaboration within the multidisciplinary team in order to give the patient the best outcome possible. Percutaneous transhepatic cholangiography allows drainage of an infected system and establishes access for repeat procedures.3 However, this requires insertion of a transhepatic catheter, which is uncomfortable for the patient and very inconvenient in terms of the external drainage.

Interventional endoscopic ultrasound is a rapidly developing field, causing much excitement among endoscopists. Unfortunately, in an attempt to push the boundaries, aggressive transesophageal and transgastric access is often promoted as “the new way,” when collaboration with the radiologist might allow a much safer combined approach.4 A guidewire placed percutaneously into the duodenum can be retrieved endoscopically, allowing a much more physiological drainage arrangement than with an extra-anatomical puncture (Fig. 1).

Owing to the high rate of recurrence of benign strictures, repeat procedures are usually required. A percutaneous approach allows access to be maintained and is often the most appropriate management. Specialist teams need to be aware of the options provided by radiological methods, and only close integration of the specialties can give patients the best chance of a successful outcome.

Preparation

High-quality imaging is essential in the workup of the patient in order to confirm the benign nature of the lesion as well as the most appropriate access route. Baseline investigations should include
ultrasound to confirm biliary dilatation, as well as assess for the presence of ascites and the signs of cirrhosis and portal venous hypertension. Computed tomography is usually the mainstay for planning, but magnetic resonance has a number of advantages. The biliary anatomy is very well demonstrated by magnetic resonance cholangiopancreatography, which—with added sequences—also allows characterization of the lesion to be treated.

A full biochemical profile, full blood count, and clotting screen are mandatory. Coagulopathy is usually corrected within 24 hours with an intravenous administration of 5–10 mg vitamin K, if there is sufficient hepatocellular function. Significant amounts of ascites separating the liver from the abdominal wall should be drained prior to biliary intervention as this increases the risk of hemorrhage and catheter displacement into the peritoneum.

It needs to be understood that chronic biliary obstruction particularly associated with low-grade sepsis may render the liver parenchyma too stiff to allow dilatation of the bile ducts, even in complete obstruction. Occasionally, this may even be associated with a normal bilirubin, but usually with a markedly raised alkaline phosphatase. Gas in the bile ducts may reflect infection with gas-forming organisms, such as yeasts, and be mistaken as a sign of a patent connection with the small bowel. Administration of prophylactic antibiotics is not always required but should be intravenously administered for at least 24 hours if there is any suggestion of biliary sepsis. Secure intravenous access, ideally in both arms, must be established prior to the procedure and appropriate fluid resuscitation performed.

Planning of the puncture site needs to take into account the biliary anatomy and location of the stricture, but also potentially further steps that might be required in the future, such as insertion of long-term catheter or subsequent stent removal.

The technique of percutaneous transhepatic cholangiography is well established. In a nutshell, it involves ultrasound guided puncture with a 21–22G Chiba needle into a suitable duct, insertion of a 0.018-inch guidewire, over which a 6F access system is inserted. This will accept a 0.035-inch guidewire, over which a 6F access system is inserted.

Fig. 1. Combined procedure following failed interventional endoscopy for a distal common bile duct (CBD) stricture. (A) After an unsuccessful attempt at endoscopic retrograde cholangiopancreatography (ERCP), EUS-guided transduodenal puncture managed to opacify the bile duct, but failed to achieve access into the CBD. Arrow: bile duct stone. (B) An 8F internal–external drain (arrowheads) was inserted percutaneously with the lower end in the fourth part of the duodenum. (C) After resolution of sepsis, retrograde access was obtained alongside the drain, followed by, stricture dilatation and sphincteroplasty with a 12 × 40 mm balloon (arrowheads) and the stone crushed.

8F vascular access sheaths (Fig. 2A) are ideal for procedures where a number of different tools such as catheters, dilatation balloons, stents, and drains may have to be passed. They safeguard the access into the biliary tree and protect the transhepatic track from the trauma of multiple exchanges. The side arm allows contrast injection without having to remove the catheter or the guidewire, and a radio opaque ring marker at the tip reduces error regarding the position in the duct and during stent deployment. Sheaths allow operators to work with a 6F catheter along a safety wire (Fig. 2B) and are large enough to accommodate most standard stent delivery systems. If larger transhepatic tracks are required, gradual and gentle dilatation over ultrastiff wires may achieve this.

Biliary intervention, particularly dilatation, can be exquisitely painful and requires at the very least expert administration of conscious sedation. Electroencephalography guidance improves the accuracy of the sedation level, but many of these cases are better performed under deep propofol sedation or general anesthesia.

Balloon dilatation

Pneumatic dilatation of the stricture is easily performed with an angioplasty balloon in most cases. It is desirable to achieve a 10-mm diameter, but this may require multiple attempts. Angioplasty balloons vary substantially in their rated dilatation pressure as well as their maximum burst pressure. It is advisable to use a pressure inflator with an attached manometer, as it allows much more controlled inflation of the balloon as well as much higher inflation pressures than hand inflation. Tough biliary strictures may need dilatation pressures well in excess of 10 atm and even high-pressure balloons occasionally rupture during a procedure. This should be avoided. Torn balloons may cause significant trauma during removal through the transhepatic track but can usually be extracted through a transhepatic sheath without too much difficulty. It is worth noting that smaller balloons (e.g., 6–8 mm) tend to have higher burst pressures and may perform better than 10- or 12-mm balloons.

There is no consensus on how long dilatation balloons should be left inflated. One school of thought is that once the stricture is disrupted, the job is done. However, strictures vary considerably in their response, and more complex strictures may benefit from leaving the balloon inflated for several minutes.

Cutting balloons incorporating little metal blades are available for angioplasty of calcified arteries. These cause a linear incision within the endothelium, are supposed to achieve a more definitive dilatation, and result in subsequent linear rather than recurrent circumferential scarring. Their use within the bile duct has been described, but their value remains to be established.
The aim of the management of biliary strictures is to achieve long-term remodeling and prevent restenosis. Therefore, it is generally accepted that large drains should be placed across the stricture following dilatation. These need to be left for 4–6 weeks, which unfortunately has a serious impact on the patient’s daily life and often causes significant pain as the liver moves with breathing, laughing, coughing, and hiccups. Softer catheters with a skin-level external hub are easier to manage and less painful than conventional polyurethane pigtail drains (Fig. 3). They also prevent skin exposure to bile, which causes skin excoriation and wound breakdown if a skin-level bag is used (Fig. 4).

Mechanical dilatation

Good results can be achieved by inserting increasing numbers of plastic stents during endoscopic retrograde cholangiopancreatography, and this is probably the method of choice where the stricture is accessible endoscopically. This is not a practical option for percutaneous management. Conventional transhepatic drains range from 6F to 10F (2–3.3 mm). It is not feasible to insert three or four of these side by side as with endoscopic plastic stents. However, if a 10F or a 12F drain can achieve a permanent 3–4-mm diameter of the bile duct, this might result in an acceptable outcome.

A few transhepatic systems are available for placing straight plastic biliary stents percutaneously, and theoretically several of these could be placed alongside each other. However, percutaneous removal or displacement of these into the bowel below is virtually impossible, and this should not be considered as a treatment option in patients with a good long-term prognosis.

Self-expanding metal stents

Because of the specific properties of the alloy, which are described in detail elsewhere, nitinol stents achieve better long-term results in stricture dilatation than plastic stents or balloon dilatation. As a principle, only fully covered metal stents should be inserted across benign strictures in patients with a good long-term prognosis. Bare or partially covered stents result in reactive tissue hyperplasia growing through the interstices of the stent, which results in occlusion and irretrievability of the stent. Salvage maneuvers using “stent-in-stent” technology to cause pressure necrosis of the ingrowing tissue have been described. However, these are risky and should be regarded as an emergency method to salvage unplanned situations.

An increasing number of removable, fully covered biliary stents are available (Fig. 5). Some designs attempt to reduce migration by varying the weave through the stent skeleton and the resulting radial forces. In order to facilitate removal, the majority of these are equipped with a retrieval lasso for catching with endoscopic forceps. This may be performed as a simple extraction from the distal end, which results in elongation and narrowing of the stent. Alternatively, knitted stents can be inverted into themselves by traction from the proximal end, as described in the esophagus.
Removal as planned—even in expert hands—is achieved in only ~75% of cases, and patients should be informed and their consent sought for the consequences of failed stent removal.

Percutaneous capture of a conventional purse string is much more difficult. Stents designed for percutaneous removal are available with a circumferential retrieval string at the proximal end. The retrieval string projects into the stent lumen. It is captured with a specially shaped hook, similar to the arresting wires on an aircraft carrier.

Traction contracts the proximal end, allowing this to be pulled into a transhepatic sheath (Fig. 6). This approach is relatively new, but initial results are encouraging with migration rates of 17%, successful removal in >95% of cases, and long-term clinical success of 86%.

It remains to be determined how long removable stents should be left in place. There is a minimum dwell time that should allow the disrupted stricture to heal. If left too long, the stent can cause a tissue reaction that impedes removal, even with fully covered stents. Furthermore, no current materials have 100% bioresistance in the hostile environment of the liver and duodenum. The metal and membrane are exposed to bile and potentially gastric acid, which results in degradation of the materials, and occasionally in metal fatigue and stent fracture. A dwell period of 4–5 weeks is currently regarded as the upper limit, although there is anecdotal evidence that some stents may remain intact for a significantly longer period.

It must be remembered that a fully covered stent carries the risk of occluding side branches of the biliary tree and the cystic and pancreatic ducts.

Biodegradable stents

In 2014, only a single biodegradable (BD) GI stent was available on the market, fashioned from a polydioxanone (PDX) monofilament (Ella-CS, Hradec Kralove, Czech Republic). The only licensed application of this stent is for the treatment of benign esophageal strictures, but it has been used off-label throughout the GI tract in benign strictures as well as cancer. PDX, a polymer used widely in bioabsorbable materials such as sutures and orthopedic prostheses, is degraded by hydrolysis. The material weakens after 2 months, then becomes brittle and starts to fragment. Sporadic case reports exist, which describe the successful...
treatment of benign biliary strictures with custom-made PDX stents (Fig. 7). These are used off-label on a named patient basis. It must be borne in mind that PDX stents do not dissolve like sugar in tea, but slowly disintegrate and small fragments of stent are passed through the stricture. In cases of an intact Sphincter of Oddi below it, this can result in biliary colic and cholangitis. However, they seem an ideal choice for the treatment of strictures of biloenteric anastomoses, where a capacious loop of bowel is present below.

At present, the radiolucent BD stents need to be hand-loaded into a 13F delivery system (Fig. 8), which requires significant dilatation of the track in order to pass through the liver. Efforts are being made to improve the loading mechanism and reduce the size of the delivery system. BD stents are as yet not licensed for use in the biliary tree and need to be used off-label on a named patient basis.

Possible future developments

Other treatment strategies pursued in the esophagus include the injection of nonsteroidal anti-inflammatory drugs, such as triamcinolone. These are extremely difficult to apply in the biliary tree.

Photodynamic therapy has been applied with varying degrees of success within malignant biliary strictures and probably has no role to play in benign diseases.

Drug eluting stents have a local cytotoxic effect in malignant disease and can delay the time to reocclusion. To what extent local drug delivery can reduce the risk of restenosis has yet to be explored, but initial case reports have identified this as a potentially viable strategy.

Conclusion

The percutaneous management of benign biliary strictures allows the simultaneous or subsequent application of a number of different treatment strategies. In the first instance, simple balloon dilatation should be attempted, followed by insertion of a large-bore catheter. Where the technology is available, fully covered removable metal stents may provide a better result, although the risk of inability to remove the stent has to be discussed in detail with the patient.

BD stents, which are likely to be available with a BD cover in the future, may represent the best treatment strategy, as no removal procedure is required. Potentially, these might incorporate immune modulating drugs to prevent stricture reoccurrence. Owing to the
piecemeal disintegration, current BD stents have to be used with caution above an intact sphincter, but may have a major role to play in anastomotic strictures after biliary diversion.

Conflicts of interest

H.-U.L. has acted as technical consultant to Ella-CS and S&G Biotech.

Acknowledgments

The authors thank Dr H. Kaltsidis, Consultant Gastroenterologist, University Hospitals of South Manchester, for providing the images and details for Case 1.

References